Three-dimensional spectral-spatial EPR imaging of free radicals in the heart: a technique for imaging tissue metabolism and oxygenation.

نویسندگان

  • P Kuppusamy
  • M Chzhan
  • K Vij
  • M Shteynbuk
  • D J Lefer
  • E Giannella
  • J L Zweier
چکیده

It has been hypothesized that free radical metabolism and oxygenation in living organs and tissues such as the heart may vary over the spatially defined tissue structure. In an effort to study these spatially defined differences, we have developed electron paramagnetic resonance imaging instrumentation enabling the performance of three-dimensional spectral-spatial images of free radicals infused into the heart and large vessels. Using this instrumentation, high-quality three-dimensional spectral-spatial images of isolated perfused rat hearts and rabbit aortas are obtained. In the isolated aorta, it is shown that spatially and spectrally accurate images of the vessel lumen and wall could be obtained in this living vascular tissue. In the isolated rat heart, imaging experiments were performed to determine the kinetics of radical clearance at different spatial locations within the heart during myocardial ischemia. The kinetic data show the existence of regional and transmural differences in myocardial free radical clearance. It is further demonstrated that EPR imaging can be used to noninvasively measure spatially localized oxygen concentrations in the heart. Thus, the technique of spectral-spatial EPR imaging is shown to be a powerful tool in providing spatial information regarding the free radical distribution, metabolism, and tissue oxygenation in living biological organs and tissues.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Noninvasive measurement of anatomic structure and intraluminal oxygenation in the gastrointestinal tract of living mice with spatial and spectral EPR imaging (oximetryymagnetic resonance imagingymetabolismyactivated charcoalyfree radical)

EPR imaging has emerged as an important tool for noninvasive three-dimensional (3D) spatial mapping of free radicals in biological tissues. Spectral–spatial EPR imaging enables mapping of the spectral information at each spatial position, and, from the observed line width, the localized tissue oxygenation can be mapped. We report the development of EPR imaging instrumentation enabling 3D spatia...

متن کامل

Simultaneous CW-EPR imaging of isotopic nitroxyl radicals

Introduction The distribution of enantiomers can be visualized with electron paramagnetic resonance (EPR) imaging if they are labeled with stable spin-probes such as nitroxyl radicals. To make in vivo imaging of chiral drugs possible, we first need to perform synthesis and toxicological studies for spin-labeled chiral drugs, as well as develop a simultaneous imaging method to visualize two enan...

متن کامل

Noninvasive Stem Cell Labeling Using USPIO Technique and their Detection with MRI

Background: To date, several imaging techniques to track stem cells are used such as positron emission tomography (PET), single photon emission computed tomography (SPECT), Bioluminescence imaging (BLI), fluorescence imaging, CT scan and magnetic resonance imaging (MRI). Although, overall sensitivity of MRI compared to SPECT and Bioluminescence techniques are lower, but due to high spatial reso...

متن کامل

Spatially resolved biologic information from in vivo EPRI, OMRI, and MRI.

EPR spectroscopy can give biologically important information, such as tissue redox status, pO2, pH, and microviscosity, based on variation of EPR spectral characteristics (i.e., intensity, linewidth, hyperfine splitting, and spectral shape of free radical probes. EPR imaging (EPRI) can obtain 1D-3D spatial distribution of such spectral components using several combinations of magnetic field gra...

متن کامل

Electron paramagnetic resonance oxygen images correlate spatially and quantitatively with Oxylite oxygen measurements.

Tumor oxygenation predicts cancer therapy response and malignant phenotype. This has spawned a number of oxymetries. Comparison of different oxymetries is crucial for the validation and understanding of these techniques. Electron paramagnetic resonance (EPR) imaging is a novel technique for providing quantitative high-resolution images of tumor and tissue oxygenation. This work compares sequenc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 91 8  شماره 

صفحات  -

تاریخ انتشار 1994